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Impact statement
Rheumatoid arthritis (RA) is accompanied

by long-term inflammation that is

mediated by cytokines and cross-

reactive (auto-)antigens. Here we suggest

one explanation is the presence of a

(dormant) microbiome in RA that sheds

the highly potent inflammagen, lipopoly-

saccharide lipopolysaccharides (LPS) to

catalyze inflammagenesis, including via b-

amyloid formation. We discuss various

co-existing features in RA, including iron

dysregulation, hypercoagulability, anom-

alous morphologies of host erythrocytes,

and microparticle formation. We review

literature and provide coherent evidence

that an aberrant blood microbiome in RA

has a major involvement in the develop-

ment, progression, and therefore over-all

etiology of the disease.

Abstract
We review the evidence that infectious agents, including those that become dormant within

the host, have a major role to play in much of the etiology of rheumatoid arthritis and the

inflammation that is its hallmark. This occurs in particular because they can produce cross-

reactive (auto-)antigens, as well as potent inflammagens such as lipopolysaccharide that

can themselves catalyze further inflammagenesis, including via b-amyloid formation. A

series of observables coexist in many chronic, inflammatory diseases as well as rheumatoid

arthritis. They include iron dysregulation, hypercoagulability, anomalous morphologies of

host erythrocytes, and microparticle formation. Iron dysregulation may be responsible for

the periodic regrowth and resuscitation of the dormant bacteria, with concomitant inflam-

magen production. The present systems biology analysis benefits from the philosophical

idea of ‘‘coherence,’’ that reflects the principle that if a series of ostensibly unrelated find-

ings are brought together into a self-consistent narrative, that narrative is thereby strength-

ened. As such, we provide a coherent and testable narrative for the major involvement of

(often dormant) bacteria in rheumatoid arthritis.
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Introduction: Disease background

RA is a complex and heterogeneous disease, sometimes
classified as a syndrome with shared clinical manifest-
ations.1 It is the most common immune-related chronic,
inflammatory, autoimmune disease and affects approxi-
mately 0.5–1% of the adult population worldwide. It
occurs as 20–50 cases per 100,000 annually, most commonly
in women over 40.2–5 Although this is not yet apparently a
mainstream recognition, a frankly overwhelming amount of
epidemiological and experimental evidence, that we shall
review here, indicates a microbial origin for RA. The clinical
features of RA involve the presence of systemic inflam-
mation, with various imbalances between pro- and
anti-inflammatory cytokine activities, which may lead to

multisystem immune complications.4 In RA patients,
serum or plasma levels of cytokines are considered to indi-
cate the severity of disease4 and this pathophysiologic pres-
ence of pro-inflammatory cytokines is known to be involved
in the degradation of bone and cartilage.4 Due to the com-
plexity of the disease, treatment and disease tracking after
diagnosis is very difficult. In this article, we shall review
briefly current knowledge regarding the involvement of
cytokines and other markers in RA, which are also the hall-
marks of systemic inflammation in all other inflammatory
conditions. We also discuss clot hypercoagulability and
platelet and erythrocyte (RBC) changes, that is consequent
upon this persistent systemic inflammation, and how
microparticle formation (from both platelets and RBCs) is
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a characteristic feature of RA. We then review a consider-
able literature (summarized in part in two books6,7) that
suggests that the presence of a variety of detritus produced
from walls and membranes of Gram-negative and other
bacteria (including wall-less forms) may play a fundamen-
tal role in RA development, as well as the accompanying
cardiovascular disease and systemic inflammation seen in
RA. We discuss how the exposure of genetically susceptible
individuals to environmental factors (1) that can act as trig-
gers (2), cause an immunological reaction, followed by an
autoimmune response (3), can result in RA (4). We review a
plethora of evidence, collectively referred to as Ebringer’s
theory (5), that points to the environmental trigger as micro-
bial (particularly from e.g. urinary tract infections) (6). We
then look at the role of LPS from these microbes (7) in caus-
ing an imbalance between pro- and anti-inflammatory cyto-
kines, followed by systemic inflammation, and the effect on
the cardiovascular and hematological health of the RA
patient (8) (see Figure 1). Finally, recognizing the lack of
easy and accessible biomarkers, we suggest that in a truly
precision medicine approach,8 hypercoagulability and also
microparticle presence, as well as LPS and b-amyloid ana-
lysis could play an important role in tracking the progres-
sion of the disease. A MEDLINE, Google Scholar, Scopus,
and Web of Science search was done to review the literature.

Epidemiology

An initial analysis of the potential causes of a disease is wise
to explain any unusual epidemiological features it may pos-
sess,9 following appropriate controls for their veracity.10

Clearly, within an overall prevalence of ca 0.5–1%, one fea-
ture of this disease is its considerable predilection for
women (69% of cases in a recent UK survey5) over men,
despite some reduction in female prevalence attributed to
the use of oral contraceptives.11,12 This is a striking differ-
ence of approximately two-or three-fold (see also litera-
ture2,12–15). Clearly, it might be linked to hormonal
differences, or to something on the X-chromosome, but
we know of no persuasive study that suggests what that
might be.

Twin studies ‘‘show concordance rates of 15% to 30%
between monozygotic twins and 5% among dizygotic
twins,14 suggesting that 50% to 60% of RA cases are due
to genetic factors.16,17’’ Other studies comparing monozy-
gotic twins alone show an occurrence in a second twin,
when a first twin manifests the disease, as just 12% in
Finland,18 15% for the UK,19 and 10% in Denmark.20 Thus,
environmental influences have a major influence.
Consequently, the leading hypothesis for RA (and indeed
for most other autoimmune disorders) is that RA is the
result of an environmental exposure or ‘‘trigger’’ in a gen-
etically more susceptible individual, that causes an
immunological reaction to the triggering antigen that hap-
pens to share one or more epitopes with a host protein (and
see Kell and Pretorius21), thus manifesting the autoimmune
responses. What might be the most common triggers? One
possibility to link the triggers with infection is to look at the
presence of flares. Flares are defined as a worsening of signs
and symptoms of sufficient intensity and duration to lead to
changes in therapy as per the Outcome Measures in
Rheumatology Clinical Trials (OMERACT) RA Flare
Definition Working Group, developed at OMERACT 9 in
2008.22 This working Group developed a standardized
method for description and measurement of ‘‘flare in RA’’
to guide individual patient treatment.23

A very high proportion of sufferers were actually
exposed to an infection before their disease was diagnosed,
but sadly these kinds of data are not typically recorded
properly in the scientific literature. Consequently, and as
this becomes increasingly easy with electronic health
records, we do encourage clinical readers to make such ana-
lyses available. However, as with several related diseases
(e.g. literature21,24–28), our role as systems biologists is to put
together a coherent, systems biology picture, and with all
the evidence that we shall review below, it is very clear
indeed that RA is driven by a microbial component. To
this end, one very major (and in our view clear) differenti-
ator between women and men is the equally more common,
anatomy-based prevalence in women over men of urinary
tract infection.29–31 This is the first ‘‘plank’’ in Ebringer’s
impressive series of arguments (most recently at6,9,32,33)
that actually gives a satisfying and coherent account of at
least one microbial origin for RA, Proteus spp., that we now
review.

Figure 1 Genetically susceptible individuals exposed to environmental factors

(1) that act as triggers (2) cause an immunological reaction followed by an

autoimmune response (3) that may lead to rheumatoid arthritis (RA) (4). We dis-

cuss Ebringer’s theory (5), suggesting the cause of the trigger being microbes (6)

and the role of LPS (7) that may result in an imbalance between pro- and anti-

inflammatory cytokines, followed by systemic inflammation and the effect on the

cardiovascular and hematological health of the RA patient (8). (A color version of

this figure is available in the online journal.)
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Ebringer’s theory (with experiments) that
Proteus infection from the urinary tract
is a major cause of RA

Ebringer sets his work in a Popperian framework (for
reviews of that see literature34–36) but we consider that it
is more conveniently set in a systems biology manner as a
logical series or chain of intellectually linked events, and
this is what we do here. Ebringer (we like especially
Ebringer et al.32) makes the following 10 claims (the many
supporting references are in the paper):

1. HLA-DR4 lymphocytes injected into a rabbit evoke
specific antibodies against Proteus cells (mainly the
species mirabilis and vulgaris).

2. Antibodies to Proteus spp. are present in RA patients
from 14 different countries.

3. Antibodies to Proteus bacteria in RA patients are dis-
ease-specific since no such antibodies are found in
other conditions.

4. When RA patients have high titers of antibodies to
Proteus such bacteria are found in urinary cultures.

5. Only Proteus bacteria and no other microbes evoke
significantly elevated antibodies in RA patients (this
is not 100% true, see below).

6. A ‘‘shared epitope’’ EQR(K)RAA shows ‘‘molecular
mimicry’’ with the related sequence ESRRAL found
in Proteus hemolysis.

7. Proteus urease contains a sequence IRRET which has
‘‘molecular mimicry’’ with the related LRREI found in
collagen XI of hyaline cartilage.

8. Sera obtained from RA patients have cytopathic
properties against sheep red cells coated with the
cross-reacting EQR(K)RAA and LRREI self-antigen
peptides.

9. Proteus sequences in hemolysin and urease as well as
the self-antigens, HLA-DR1/4 and collagen XI, each
contain an arginine doublet, thereby providing a sub-
strate for peptidyl arginine deiminase (PAD) to give
rise to citrulline, which is the main antigenic compo-
nent of CCP, antibodies to which are found in early
cases of RA.

10. Antibodies to Proteus come not only from sequences
cross reacting to self-antigens but also from non-
cross reacting sequences, thereby indicating that
active RA patients have been exposed to infection
by Proteus.

Taken together, these arguments show strongly that
microbes, especially those derived from urinary tract infec-
tions, can act as triggers of autoimmunity, via established
epitopes or antigens. We should point out, however, that
many other studies (and it is highly doubtful that there
could be a unitary cause) indicate antibody and PCR-
based evidence for the presence or role of other microbes
in RA. Both gut dysbioses and a changed oral microbiota
have also been implicated. There is also evidence of a sig-
nificant association between periodontitis and RA.37–43 Gut

dysbioses are also frequently found in RA individuals44,45

and it was recently shown that dysbioses in RA patients
may reflect an unusual abundance of certain rare bacterial
lineages.46 Normalizing the gut microbiota was also sug-
gested in assessing prognoses and in the treatment of
RA.45,46 Some of these other microbes that are associated
with RA are listed in Table 1 (and see also literature21,27,28).

This was a binary (presence/absence) assessment of the
microbial contribution, but microbes have many properties
beyond presence and absence. In particular, a notable and
missing feature of most of these studies (including those of
Ebringer) involves (i) the physiological state of the organ-
isms in question, and (ii) what causes them to manifest their
activities periodically (for instance as the ‘‘flares’’ character-
istic of RA). This we therefore discuss next.

Dormancy, resuscitation, and iron
dysregulation

Clinical or infection microbiologists typically recognize bac-
teria as being in one of two physiological macrostates, either
being ‘‘alive’’ (on the basis of their being capable of repli-
cation, e.g. to form a colony on a petri dish containing a
suitable solid medium), or if not being so capable then
being assumed ‘‘dead.’’ However, these are not the only
two major physiological states, and indeed they are prob-
ably the least common in natural environments!
Importantly, the definition of these states is operational:
the appearance of a microbe’s physiology also depends on
the experiment being used to test it and is not of itself an
‘‘innate property’’ of the organism.65–67 In environmental
microbiology, most microbes are non-growing because
they lack the nutrients and/or signaling molecules to rep-
licate, but they are not (irreversibly) ‘‘dead.’’ They are best
described as ‘‘dormant,’’ and the means by which they are
brought back from an apparent state of non-aliveness to one
in which they can be cultivated is conventionally known
as ‘‘resuscitation.’’ We demonstrated this in a series of
papers in laboratory cultures of various actinobacteria
(e.g. literature65,68–73), leading to the discovery of an autolo-
gous ‘‘wake-up’’ molecule, the ‘‘resuscitation promotion
factor’’ or Rpf74–78 that was necessary for resuscitating dor-
mant bacteria in the presence of weak nutrient broth. Note
that assays must be done under conditions of dilution to

Table 1 Some other prokaryotic microorganisms besides Proteus spp.

that have been implicated in RA

Organism Evidence

Selected

references

Campylobacter Microbiology 47

Chlamydia trachomatis Synovial tissues 48

Escherichia coli Antibodies 49,50

Multiple organisms Review 27,51–53

Mycoplasmas PCR, westerns, antibodies 54–57

Porphyromonas gingivalis Antibodies, PCR, culture 39,58–63

Staphylococcus aureus Microbiology of hip

joint infections

64
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extinction,66,67 to avoid the possibility of simple regrowth of
small numbers of cells that were always ‘‘alive’’ and never
dormant.

In clinical microbiology, the terms ‘‘persister’’ and ‘‘per-
sistent’’ are commonly used to refer to a phenotypically
non-growing (but non-dead) subset of microbes, typically
those that have been treated with but tolerant to antibiotics
(e.g. literature27,28,79–86). In general terms, these too are
operationally dormant as defined above, though their rela-
tive physiological states (e.g. as judged by expression pro-
files) are not really established. We have recently
summarized the evidence for a dormant blood microbiome
including in red cells21,27,28 (and see also Damgaard et al.87)
to complement other literature pertaining to white cells and
tissues (e.g. literature88–92). Such dormant cells are, of
course, well placed to create inflammation via a continuing
shedding of inflammatory agents such as LPS and mol-
ecules with antigenic properties as described above. We
note that the emergence of infection may also accompany
treatment of the disease,93–95 although whether this is due
to resuscitation (as we suspect96) or reinfection is not yet
uniformly clear.

The question then arises as to what kinds of stimuli trig-
ger the resuscitation. Two are well established. One is the
stimulation of Gram-negative bacterial growth by the stress
hormone noradrenaline (NA) and other auto-inducers.97–103

One of the roles of NA is to act as a siderophore,104,105 since
it is normally available iron that limits microbial replication
in vivo,106–111 a phenomenon that adds considerably to the
undesirable and purely chemical effects of the second one,
which is the presence and availability of unliganded iron
that is liable to catalyze the highly damaging Fenton reac-
tion25,112 (see Figure 2 adapted from Kell et al.27).

Pathophysiologic markers of
inflammation in RA

As is well established, inflammatory agents such as LPS
lead to the induction of inflammatory cytokines, most com-
monly IL-6, IL-1b, and TNF-a.129,147,201,142,159 Cytokine-

mediated pathways are central to the pathogenesis of
RA.119 A MEDLINE, Google Scholar, Scopus, and Web of
Science assessment revealed that a plethora of cytokines
and markers of inflammation are involved in RA pathology,
and importantly, these cytokines are not only localized to
the synovial fluid, but are systemically present and detect-
able in serum samples (see Table 2). Furthermore, a changed
systemic cytokine activity is typically associated with oxi-
dative stress, and this is also true in RA individuals.202–205

Systemic inflammation, cardiovascular
disease, and RA

All of the above-mentioned cytokines and related inflam-
matory mediators are known to be involved in both sys-
temic inflammation and cardiovascular disease, and it is
also known that patients with RA carry an excess risk for
cardiovascular disease,119,206–210 i.e. that there is a comor-
bidity. Indeed, cells and cytokines implicated in RA patho-
genesis are involved in the development and progression of
atherosclerosis, (which is generally recognized as an inflam-
matory cardiovascular disease208). Analysis of RA patients
selected from an RA clinic in South Africa (ethical clearance
obtained) confirmed that indeed cardiovascular complica-
tions are an important part of the clinical profile of RA
patients (see Table 3).

Cardiovascular comorbidities relate more than others to
disease activity in RA, and particularly type 2 diabetes and
hyperlipidemia were found to be associated with disease
activity.211 Cardiovascular disease, and particularly dia-
betes, has also been linked to gut dysbioses and bacterial
translocation.212–216 Recently, it was also suggested that a
co-morbidity index should be used both at baseline, and as
a continuous variable in analyses in RA patients,217 as some
co-morbidities are causally associated with RA and many
others are related to its treatment.218

Systemic inflammation is entirely consistent with the
plethora of diseases and comorbidities that exhibit iron dys-
regulation,24,112 raised serum ferritin,219 hypercoagulation
and hypofibrinolysis,25 and anomalous morphological
changes in both erythrocytes and fibrin.220,221 We thus
turn to hypercoagulation in RA.

Hypercoagulation, erythrocyte (RBC), and
platelet involvement in RA as a result
of systemic inflammation

Another hallmark of systemic inflammation (as well as car-
diovascular pathology) is clot hypercoagulability, and a
hypercoagulable state is also found in RA,222–231 together
with a decreased clot lysis ability,25,225,226 possibly due to
genuine amyloid formation.232 Systemic inflammation, oxi-
dative stress, and hypercoagualability all affect erythro-
cytes (RBCs) and platelets. One of the changes due to the
systemic inflammation and oxidative stress noticeable in
RBCs and platelets is the production of cell-derived micro-
particles (MPs).219

Flow cytometry is the usual method to quantify
MP233,234; unfortunately, the small size of these structures
and lack of standardization in methodology complicates

Figure 2 A bacterial system contains distinct subpopulations (1), that we

classify as culturable, dormant and non-culturable (2). Specific attention is given

to persister cells (3), and the inter-relationship (4) between the subpopulations

and phenotypic switching between culturability and dormancy (5). Throughout

we follow a systems biology approach to suggest resuscitation due to various

triggers like iron and noradrenaline (6). (A color version of this figure is available in

the online journal.)
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measurement.235 Mostly, as MP contain surface and cyto-
plasmic contents of the parent cells and bear phosphatidyl-
serine, antibodies to specific cell surface markers and
annexin V can be used for identification235,236 or for tissue
factor-dependent FXa generation assays.237 Their sizes can

vary but are of the order of 50 to 800 nm238 and are therefore
easily detected on and around their mother-cell by scanning
electron microscopy.209

In RA, circulating MPs exposing complement compo-
nents or activator molecules are elevated,239 and their

Table 2 Dysregulated inflammatory markers in Rheumatoid arthritis

Cytokines and

other markers

of inflammation Effect on RA

Selected

references

IL-1b Upregulated; strong stimulator of bone resorption. Linked to joint inflammation and

cartilage and bone destruction in patients with RA.

Present in serum of RA patients.

113–118

IL-6 IL-6 is involved in the regulation of immune responses, hematopoiesis and inflammation

and is found in abundance in the synovial fluid and serum of patients with RA and the

level correlates with the disease activity and joint destruction.

Present in serum of RA patients.

119,120,121,113,

114,121–128

IL-8 It is a neutrophil-activating peptide and the degree of neutrophil turnover is linked to the

anaerobic metabolism of the synovial cavity. Upregulated in RA; and IL-6/IL-1b
co-stimulation increases IL-8 production.

Present in serum of RA patients.

129,130–135

IL-12 Linked to leukocyte migration, bone erosions and angiogenesis in RA.

Present in serum of RA patients.

114,136–141

IL-15 Upregulated and expressed in synovial fluid. Long-term retention of IL-15/IL-15R a
complexes on the surfaces of monocytes and dendritic cells.

Present in serum of RA patients.

142,143–146

IL-16 Present in human synovial fibroblasts.

Present in serum of RA patients.

147,148–151

IL-17 Plays key roles in the propagation of joint inflammation, cartilage destruction, and bone

erosion; IL-17 inhibits progenitor cells in RA cartilage; has regulatory roles in host

defense and chronic inflammation which result in tissue damage and autoimmunity;

shares downstream transcription factors with IL-1 and TNF-a; promote osteoclasto-

genesis.

Present in serum of RA patients.

147,152,147,113,114,

123,132,153–158

IL-18 Detected in synovial fluid in RA patients.

Present in serum of RA patients.

159,137,160–165

IL-23 IL-23 is essential for the differentiation of Th17 lymphocytes, a subtype of T lymphocyte

implicated in RA and promotes promote osteoclastogenesis

Present in serum of RA patients.

123,139,157,166–168

IL-27 IL-27 upregulated and produced by antigen-presenting cells. Linked to leukocyte

migration, bone erosions and angiogenesis.

Present in serum of RA patients.

139,155,169–175

IL-7, IL- 10- IL-19,

IL-20, IL-22

IL-32, IL-35

All implicated in contributing to the pathogenesis of RA. 138,139,176

Toll-like receptor 2

(TLR-2) and TLR-4

Expressed in inflamed RA synovium, and the expression of these receptors is associated

with the presence of inflammatory cytokines. expressed by cells within the RA joint and a

variety of endogenous TLR ligands are present within the inflamed joints of patients with

RA.

147,177–180

TNF-a Promotes systemic inflammation and autoimmune pathology and is one of the cytokines

that make up the acute phase reaction. Linked to joint inflammation and cartilage and

bone destruction in patients with RA.

Present in serum of RA patients.

119,114,117,120,

122,181–184

interferon g (IFNg) Promotes autoimmune pathology and plays a role in immunity against intracellular

pathogens; abundantly expressed in rheumatoid synovitis.

Present in serum of RA patients.

113,185–188

Prostaglandin E2 Acts as mediator of immune inflammation. 132,189,190

Thromboxane-A2 and COX-2

[cyclooxygenase (COX)-2/

thromboxane A2 (TxA2)]

Thromboxane-A2 produced by activated platelets and has prothrombotic properties, while

COX-2is responsible for the formation of thromboxane and prostaglandins.

191–193

Iron Increased levels in synovial fluid and changed serum ferritin levels 194–200
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levels are correlated with disease activity.240 These MPs are
also of great important in cardiovascular diseases, and this
may be one reason for the enhanced cardiovascular mor-
bidity and mortality seen in RA.240 Furthermore, MPs may
contribute to the local hypercoagulation and fibrin depos-
ition in inflamed joints of patients with RA.241

Particularly, MPs derived from platelets that are
involved in various thrombotic events are elevated in RA
patients, and these platelet-derived MPs may be an import-
ant role-player in RA240,242,243; they may even be used as a
biomarker reflecting systemic cell activation in RA.244,245

Platelet MPs in RA have also been found to be responsible
for detrimental effects on endothelial cells, thus supporting
their role as biomarkers of vascular damage.246 Although
RBC MP formation is not very well described in RA in par-
ticular, we recently discussed possible mechanisms by
which RBC MP formation may occur in RA.245 The nature
and distribution of lipids in RBC bilayers are altered in RA,
showing a decreased level of cholesterol and phospholipids
when compared to healthy controls.247 Changed levels of
cholesterol found in the RBC phospholipid bilayer can
determine its capacity to express phosphatidylserine (PS)
on the outer leaflet, independent of ATP-driven flip-
pases.248 It is also well known that oxidative stress in RA
influences RBC membrane integrity (see Table 4), and this
supports the possibility that portions of the RBC membrane
may bud off to form RBC MPs.174

Pathologic changes in coagulation result directly in
abnormal fibrin fiber formation during clotting, and MPs
associated with platelets, as well as membrane changes of
RBCs, can be visualized by scanning electron microscopy
in blood smears from RA individuals. See Figure 3(a) for
an example of healthy fibrin fiber formation versus patho-
logical fibrin fiber formation in RA (Figure 3(b)), and a
healthy platelet showing a clear cell body and pseudopo-
dia formation with a smooth membrane (Figure 4(a))
versus platelets from RA where activation, spreading,
and MP formation are visible (Figure 4(b) and (c)). Red
arrows in Figure 4(c) possibly indicate round ultramicro-
bacteria, which differ from the much more irregularly
shaped MPs.

Figure 5(a) and (b) shows a typical healthy RBC with no
membrane changes, compared to normal RBCs, of a typical
RA individual (Figure 5(c) and (d)), where RBC folding due

Table 3 An analysis of the co-existing conditions of rheumatoid arthritis

patients patients from a rheumatoid arthritis clinic in South Africa, show-

ing baseline demographics of subjects (n¼38) with Rheumatoid Arthritis

Variable

Mean� (SD) for age,

others N (%)

Age, years

Males 53� (13.01)

Females 55� (11.54)

Chronic medication: Females Males

NSAID 21 (64%) 4 (80%)

Prednisone 20 (61%) 5 (100%)

Chloroquine 7 (21%) 2 (40%)

Salazopyrin 8 (24%) 1 (20%)

Opioids 13 (39%) 1 (20%)

Anti-depressants 6 (18%) 1 (20%)

Acid-reducers 17 (51%) 3 (60%)

Anti-hypertensives 14 (42%) 5 (100%)

Statins 10 (30%) 2 (40%)

Co-morbid conditions:

Hypertension 21 (64%) 5 (100%)

Dyslipidaemia 12 (36%) 1 (20%)

Hypothyroidism 4 (12%)

Asthma 3 (9%)

Anaemia 3 (9%)

Diabetes mellitus 1 (3%) 1 (20%)

Gastric reflux 11 (33%) 3 (60%)

Figure 3 Fibrin fiber formation in the presence of thrombin (a) healthy fibrin and (b) rheumatoid arthritis fibrin with matted fibrin. Scale: 1 mm

Table 4 Markers taken as indicators of oxidative stress in RBCs

Marker Observed effect On RBCs

Peroxides Increased in RBCs249

Glutathione Oxidized in RBCs249–251

Catalase Increased in RBCs250

Superoxide dismutase Increased in RBCs250

Malondialdehyde Increased in RBCs250

Membrane redox system Upregulated in RBCs250

Caspase-3/Calpain Increased in RBCs251

Enzyme activity, e.g. ATPases Altered in RBCs249,251–254

2,3 Diphosphoglycerate Decreased in RBCs251,253,254
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to loss of structural integrity is seen in the presence of fibrin
fiber formation (when thrombin is added (Figure 5(c))) and
membrane changes are observed with MP formation
(Figure 5(d)). The changed membrane surface is also

confirmed via roughness analysis of RBC membranes
using atomic force microscopy (AFM), where a significantly
increased roughness was noted in RA RBCs compared to
the case of healthy RBCs (Figure 6).

Figure 4 (a) A healthy platelet with prominent cell body and pseudopodia formation and smooth membrane; (b) two spreaded and activated platelets with micro-

particle formation (irregularly shaped structures closely associated with membranes (white arrows)) in rheumatoid arthritis; red arrows showing much rounder structures

– possibly ultrabacteria; (c) a higher magnification of an RA platelet with microparticles budding off spreaded platelet. The scale bars are (a): 200 nm; (b): 1 mm and (c):

200 nm. (A color version of this figure is available in the online journal.)

Figure 5 (a) and (b) A representative healthy RBC (b is higher magnification showing the membrane); (c and d) A representative rheumatoid arthritis RBC with folding

(c) and visible membrane microparticle formation. Scale bars for (a) and (c): 1 mm; scale bars for (b) and (d): 100 nm
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A note on amyloidogenesis and
amyloidoses in RA

In a recent development,232,255,256 we have shown that
the fibrin dense-matted deposits of the type shown in
Figure 4(b) can be generated by tiny amounts of LPS, and
that they are actually b-amyloid in nature. This has signifi-
cant implication more generally,257 including diseases such
as sepsis258 and pre-eclampsia.259 Amyloid fibrils of various
kinds are widely recognized as inflammatory and cytotoxic
(e.g. literature260–263). We do not yet know the origins of the
amyloid seen in RA, but it has long been known that amy-
loidoses are an important accompaniment (and potentially
exacerbator) of RA (e.g. literature264–268).

Present treatments treat the symptoms

There are two main pharmacological treatments for RA, viz.
small molecule disease-modifying anti-rheumatic drugs
(so-called sDMARDs) and biologicals (bDMARDs). We
shall discuss these in general terms, especially for the
former from the perspective of potential antibacterial
effects. However, we need to start with present metrics for
the severity of disease.

Metrics of disease severity

Given that there seems little general recognition of the real
causes of RA, and that the symptoms including pain can be
very severe, it is understandable, as this overall section
implies, that many treatments are aimed at alleviating the
symptoms. We also recognize that at least some of those that
‘‘work,’’ may do so, if inadvertently, by treating the causes
as well. But to begin with, we need to consider the metrics
of disease severity in common use.

A great many approaches to assessing disease severity
exist, and the tendency to prescribe more drugs to those
with more severe disease is necessarily269 a confounding
factor.270 Databases for medical claims around disease
severity have value,270 but they tend to lack information
on important clinical variables, such as the number of
tender and swollen joints, which would traditionally be
used to assess disease severity in RA.271 Where compari-
sons exist, the information regarding, e.g. the presence of
swollen joints and disease severity, are not well correlated.
Objective measures of variables such as inflammatory cyto-
kines are attractive, but for the patient, the severity, espe-
cially of pain, is subjective, and patient-assessed severity
indices are consequently common. This said, the patient
global assessment (PGA)272 is noteworthy273 as while
using seven objective criteria based on stiffness and swel-
ling, pain (being presumably too subjective) is not among
them. Other studies did find some correlations between
swelling, stiffness, and pain of joints.274,275

The European League Against Rheumatism (EULAR)
has a number of useful recommendations, including treat-
ment/management,276 efficacy,277,278 and joint imaging.279

For our present purposes, these will suffice entirely.

Small molecules (sDMARDs) and their role(s) as
antibacterials

The chief recommendations276 are to start early and monitor
frequently. These are seen as the strategy of first resort, with
methrotrexate, sulfasalazine, and leflunomide being seen as
front line drugs (possibly along with low-dose glucocortic-
oids). It is highly noteworthy that sulfasalazine is in fact an
antibiotic (one of the first), as it is split in the intestine into
aspirin and the antibiotic sulphapyridine,280,281 while
methotrexate shows antibiotic activity against organisms
as diverse as S. aureus282 and Plasmodium vivax.283 As men-
tioned above, ‘‘first treatments’’ are the least likely to be
confounded by bias occasioned by the fact that later treat-
ments will be favored by patients with more severe or
refractory disease, a phenomenon that probably con-
founded a study of minocycline and doxycycline.284

However, and while – like other drugs285,286 – they probably
have multiple effects, a good many studies indicate the util-
ity of the antibiotics minocycline and doxycycline in treat-
ing RA (e.g. literature287–294). After sDMARDs have been
tried, the recommendation276is to move to a biological.

Biologicals (bDMARDs)

The chief biologicals276,277,295–298 are inhibitors of TNF-a,
including monoclonals, and inhibitors of the IL-6 receptor;
they all decrease inflammatory symptoms, and it is unclear
whether they might have any direct or indirect antibacterial
effects. Their chief issue is that, as proteins, they can them-
selves cause (auto) antigens to be raised,299–301 while, as
mentioned above, any dampening of immune system
response may increase the likelihood of novel or emergent
infection.

Iron chelation as a therapeutic? If the ‘‘dormant micro-
bial’’ hypothesis is correct, it is to be predicted that

Figure 6 RBC membrane roughness analysis as seen with atomic force

microscopy (AFM) of a representative micrograph from a healthy RBC (a) and a

rheumatoid arthritis RBC (b). (A color version of this figure is available in the online

journal.)
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nutritional and/or pharmacological iron chelators would
be of clinical benefit. Although we are not aware of any
clinical trials to this end, a number of papers indicate the
therapeutic benefits of chelators in RA (e.g. literature302–305

Iron chelation may also have a useful mechanistic role in
iron redistribution.306–308 Thus, as with Alzheimer’s dis-
ease, where the established benefits309 of iron chelation lan-
guished for decades,310,311 it would seem that iron
withholding (e.g. literature312,313) might be an important
therapeutic strategy in RA that is well worth exploring.

In a similar vein, we would predict or anticipate a great
preponderance of RA in those with iron overload diseases,
as indeed seems to be the case.314,315

A role for lipopolysacharides (LPS) in RA

Recently, we summarized the evidence for a significant
involvement of lipopolysaccharide shed by dormant and
resuscitating bacteria as underpinning the chronic

inflammation characteristic of a variety of diseases, and
suggested that LPS may play a role in the pathogenesis of
RA.21 The presence and role of LPS may be supported by a
recent review that provided evidence for the involvement of
a microbiome in inflammatory arthritis and rheumatic dis-
eases.316 Recently, Scher et al.317 also found strong correlates
between the presence of Prevotella copri and new-onset
untreated RA patients.

Certainly, LPS is also known to upregulate all of the cyto-
kines upregulated in RA and mentioned in Table 1. In our
recent review,21 we also focused on the fact that antibodies
could be generated to LPS that – like the anti-Proteus anti-
bodies mentioned in detail above – might also serve as
autoantibodies of significance in RA and in particular
during the flares (that may be ascribed to periods of par-
ticular resuscitation activity).

The generalized LPS also exerts its effects via activation
of cytokines such as IL-6, and TNF-a in response to LPS,115

IL-8,318 IL-12,319 IL-15,320 thereby exciting the innate

Figure 7 The LPS-mediated cellular production of inflammatory cytokines. Canonical pathway of LPS-mediated release and nuclear translocation of NF-kB (based

on O’Neill et al.327) taken from Kell and Pretorius.21 (A color version of this figure is available in the online journal.)
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immune response. The scheme is typically as follows
(extensively discussed in Kell and Pretorius21):

. LPS binds to the toll-like receptor 4 (TLR4).321–325

. Production of a variety of pro-inflammatory cyto-
kines,326–328 where NF-kB plays a prominent
role329,330 via a set of canonical pathways illustrated
in Figure 7.

. NF-kB translocates to the nucleus to turn on a great
many genes in a frequency-dependent fashion,
including in particular TNF-a and IL-6.331–333

. At high concentrations of LPS,334,335 it also activates a
‘‘non-canonical’’ inflammasome pathway, which is
independent of TLR4336,337 (see Figure 8).

Finally (see above), LPS may catalyze the formation of
inflammatory and cytotoxic b-amyloids. Consequently, we
might again suggest that appropriate antibacterials and iron
chelators (that can hitchhike on the necessary trans-
porters282,339–343) would serve to lower this stimulus, and
in contrast to the biologics actually strike at the root causes
of the disease.

Further tests of our hypothesis

While we have adduced much evidence in favor of the view
that recurring infection by (resuscitating dormant) bacteria

is in fact a, if not the, major and ultimate cause of RA, albeit
there is not a unitary ‘‘cause,’’ our views do come with
multiple predictions that may be tested (of course some
have been already, see above, in many cases extensively).

. Bacteria should be detectable in relevant tissues of
RA patients, whether by culture or by molecular
methods (e.g. macromolecular sequencing or
antibodies).

. Relevant products such as LPS and other antigens
should be detectable in patients vs. controls.

. Their numbers (bacteria and/or inflammatory prod-
ucts) should increase with disease severity and during
‘‘flares.’’

. Their numbers and activity (hence disease preva-
lence/severity) should correlate with free iron levels.

. Treatments that lower the activity of bacteria and/or
their products should be of significant therapeutic
benefit.

. These may include iron withholding, antibacterial,
anti-LPS, and anti-amyloid treatments.

Although probably not yet seen as mainstream, a
number of therapeutic strategies based on these and other
ideas (including the roles of vitamin D metabolites, that for
reasons of space we do not discuss here) do indeed seem to
have enjoyed success (e.g. literature344–348).

Figure 8 The intracellular LPS-mediated activation of caspase-1 leading to IL-1b production (after Latz et al.338) taken from Kell and Pretorius.21 (A color version of

this figure is available in the online journal.)
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Concluding remarks

As mentioned previously,27 while it can be difficult (but
cf349) to ascribe causality in complex biochemical networks,
an accepted strategy within the philosophy of science, that
rather accurately describes the systems biology approach, is
to the effect that if a series of ostensibly unrelated findings
are brought together into a self-consistent narrative, that
narrative is thereby strengthened. This is known as ‘‘coher-
ence.’’350–353 We have sought, we believe successfully, to
bring together the evidence for a coherent narrative that
links infection, microbial dormancy, iron dysregulation,
and inflammation as part of the etiology of RA.
Importantly, the proposals can easily be tested further,
both diagnostically and therapeutically.
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